

2025 Oregon City Water Quality Report

We are pleased to provide you with Oregon City's 2025 Water Quality Report. Our drinking water continues to meet or surpass all state and federal standards and regulations.

Este informe contiene información importante acerca de su agua potable. Haga que alguien lo traduzca para usted, o hable con alguien que lo entienda.

В этом сообщении содержится важная информация о воде, которую вы пьёте. Попросите кого-нибудь перевести для вас это сообщение или поговорите с человеком, который понимает его содержание.

This report contains important information about your drinking water. Please share this information with anyone who drinks this water (or their guardians), especially those who may not have received this report directly (for example people in apartments, nursing homes, schools, and businesses).

Committed to:

Protecting public health—Providing clean, safe drinking water that complies with all state and federal regulations.

Protecting public safety—Ensuring reliable, plentiful water for fire suppression.

Protecting the environment—Providing a safe and reliable stormwater system and implementing watershed protection and restoration actions that consistently promote surface water quality and stream health.

For questions about this report or if you have a water quality concern please contact
Mallory Ott at 971-204-4674 or mott@orc city.org.

Our Water Treatment Process

Oregon City's drinking water comes from the Clackamas River. Water from the Clackamas River is made safe to drink by conventional treatment at the South Fork Water Board (SFWB) Treatment Plant, located in the Park Place area of Oregon City. Oregon City purchases treated drinking water from SFWB and distributes it to Oregon City Water customers. The basic steps to the treatment process are:

- **Coagulation**—adding chemicals (alum & polymers) to help very small suspended particles attract one another and form larger particles.
- **Flocculation**—gently stirring the water to bring the suspended particles together so they will form larger clumps called floc.
- **Sedimentation**—the velocity of the water is reduced allowing gravity to settle out the floc.

• **Filtration**—any remaining particles not settled out earlier are removed as water flows through filters made up of sand and anthracite coal.

• **Corrosion Control**—adding soda ash in order to increase the pH of the water, making it less likely to corrode/deteriorate piping materials & plumbing fixtures.

• **Disinfection**—adding sodium hypochlorite (a liquid form of chlorine similar to household bleach) to kill any disease causing organisms in the water. It is important have a small amount of chlorine remain in the water as it travels throughout the distribution system.

SFWB, and by extension, Oregon City, is a member of the Regional Water Providers Consortium. The Consortium provides leadership in the planning, management, stewardship, and resiliency of drinking water in the greater Portland, OR metropolitan region. Learn more at regionalH2O.org.

Check out how-to videos and other resources that show how to store, access, and treat drinking water in an emergency at regionalH2O.org/emergency-preparedness.

To learn more about SFWB visit their website at: www.sfwb.org.

Protecting our drinking water source

The Clackamas River supplies high-quality drinking water to over 300,000 people, including those in Oregon City. The Clackamas River watershed begins on the slopes of Olallie Butte near Mount Hood and flows nearly 83 miles from its headwaters (elevation 6,000 feet) to its confluence with the Willamette River near Clackamette Park (elevation 12 feet); it encompasses 940 square miles.

Unlike the City of Portland's Bull Run watershed, the Clackamas River watershed is completely unprotected. The watershed crosses two counties and is occupied by a wide range of land uses. It is 72% publicly owned, 25% privately owned, and 3% tribally owned.

In 2019, an updated Source Water Assessment was completed, which identified over 3,000 potential sources of pollution for the lower Clackamas River intakes. Many of these potential sources of pollution pose a moderate to high risk to the drinking water. To learn about contamination risks to our drinking water source go to the updated Source Water Assessment Report (May 2019) at:

<https://www.orcity.org/DocumentCenter/View/5823/Updated-Source-Water-Assessment--2019-PDF>

In 2021, the Clackamas River Water Providers (CRWP) updated their Drinking Water Protection Plan for the Clackamas River. The purpose of this plan is to provide a road map of potential strategies and programs to implement over the next decade, and beyond, to preserve the Clackamas River as a high-quality drinking water source. You can read the plan and learn more about the CRWP by going to: <https://www.clackamasproviders.org/drinking-water-protection-plan/>.

Common Drinking Water Contaminants

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.

Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.

Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

Contaminants that may be present in source water include:

Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

Important message from EPA

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline at **1.800.426.4791**.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline at **1.800.426.4791**.

Monitoring For Contaminants

Our most recent test results can be seen in the data table on Page 4 of this report. This table includes data collected by Oregon City and South Fork Water Board in 2024. We are required to report only those substances that were present at detectable levels.

You may view all monitoring results and compliance records by visiting the Oregon Health Authority Data Online website at
<https://yourwater.oregon.gov>

Search by water system name or ID number:

Oregon City – OR4101511

South Fork Water Board – OR4100591

In order to ensure that tap water is safe to drink, the Environmental Protection Agency (EPA) prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

2024 Monitoring Data

Substance/ Contaminant (Unit of Measurement)	MCL (MRDL)	MCLG (MRDLG)	Oregon City Measurement or Average (Range)	Major Sources in Drinking Water	Violation?
Disinfectant Residual, Disinfection By-Products, and By-product Precursors					
Chlorine (ppm)	(4)	(4)	0.92 (0.20 – 1.41)	Water additive used to control microbes	NO
Haloacetic Acids (ppb)	60	-	49 ¹ (15 – 60.0)	By-product of disinfection when chlorine combines with organic matter	NO
Total Trihalomethanes (ppb)	80	-	60 ¹ (25.1 – 75.0)		
Total Organic Carbon – raw water (ppm)	TT	-	0.67 (ND – 1.9)	Naturally present in the environment. Total Organic Carbon (TOC) has no health effects; however, it provides a medium for the formation of disinfection by-products.	NO
Total Organic Carbon – finish water (ppm)	TT	-	0.35 (ND – 0.69)		
Turbidity (NTU)	≤ 0.3 in 95% of samples	-	0.09 (Highest) 100% of samples met turbidity standards	Soil runoff Turbidity is a measure of cloudiness caused by suspended particles in the water. Turbidity is monitored every 4 hours during treatment plant operation.	NO
Microbiological Contaminants					
Total Coliform Bacteria (# of positive samples)	***	0	1 positive sample out of 521 samples collected	Naturally present in the environment	NO
E. coli (# of positive samples)	***	0	0	Human and animal fecal waste	NO
Metals and Inorganic Contaminants					
Barium (ppm)	2	2	0.00321	Erosion of natural deposits; discharge from drilling wastes and metal refineries	NO
Nitrate (ppm)	10	10	0.177	Runoff from fertilizer; leaching from septic tanks, sewage; erosion of natural deposits	NO
Lead (ppb)	AL = 15	0	90 th percentile = 1.84 (ND – 6.29) Samples exceeding AL = 0	Corrosion of household plumbing; erosion of natural deposits. Lead and Copper samples are collected every 3 years. These results are from 2024.	NO
Copper (ppm)	AL = 1.3	1.3	90 th percentile = 0.0399 (ND - 0.052) Samples exceeding AL = 0		
Secondary Standards					
Aluminum (ppb)	50-200		11	Secondary standards are non-enforceable guidelines regarding contaminants that may cause cosmetic and/or aesthetic effects such as taste, odor, or color. EPA recommends secondary standards but does not require water systems to comply.	-
Chloride (ppm)	250	-	12		
Sulfate (ppm)	250	-	3.5		
Hardness (ppm)	250	-	36.0 ²		
Total Dissolved Solids (ppm)	500	-	60.0		
Odor Threshold Number (TON)	3	-	1		
Unregulated Contaminants					
Sodium (ppm)	-	-	13.2	Erosion of natural deposits	-
Alkalinity (ppm)	-	-	29.6 (21.9 – 34.1)	Alkalinity is a measure of water's ability to neutralize acids. There are no health concerns with alkalinity.	-

¹**Highest Locational Running Annual Average** is the highest calculated annual average at a single location. Oregon City samples disinfection by-products quarterly, at 4 locations.

^{***}**Total coliform/E. coli** - No more than 5% total coliform positive in a month. Every total coliform positive sample must be analyzed for E. coli. If any routine or repeat samples are E. coli positive, the system has an acute MCL violation.

²**Hardness** - 10-50 ppm is considered soft water.

DEFINITIONS ON NEXT PAGE

Unregulated Contaminant Monitoring

In 2024, Oregon City collected drinking water samples for 30 unregulated contaminants (a list of the individual contaminants are shown in the table below). The 30 unregulated contaminants consisted of 29 per- and polyfluoroalkyl substances (PFAS) and lithium. Samples for these unregulated compounds were collected in January, April, July, and October of 2024. **None of the contaminants were detected in Oregon City's water.**

All large public water systems were required to conduct this special sampling. EPA selected which compounds were sampled for and will use our data along with data from all the other water systems in the country to assess the number of people potentially being exposed and at what levels of exposure. EPA then uses this information to determine whether the compounds should be regulated and at what concentrations.

List of Contaminants	
lithium	perfluorohexanesulfonic acid (PFHxS)
perfluorononanoic acid (PFNA)	perfluorohexanoic acid (PFHxA)
perfluorooctanesulfonic acid (PFOS)	perfluoropentanoic acid (PFPeA)
perfluorooctanoic acid (PFOA)	perfluoropentanesulfonic acid (PFPeS)
perfluorobutanoic acid (PFBA)	perfluoroundecanoic acid (PFUnA)
perfluorobutanesulfonic acid (PFBS)	perfluorotetradecanoic acid (PFTA)
perfluoroheptanesulfonic acid (PFHpS)	perfluorotridecanoic acid (PFTrDA)
perfluoroheptanoic acid (PFHpA)	perfluoro-3-methoxypropanoic acid (PFMPA)
perfluorodecanoic acid (PFDA)	perfluoro-4-methoxybutanoic acid (PFMBA)
9-chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9Cl-PF3ONS)	1H,1H, 2H, 2H-perfluoroctane sulfonic acid (6:2FTS)
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	N-ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA)
hexafluoropropylene oxide dimer acid (HFPO-DA) (GenX chemicals)	N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)
nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	perfluorododecanoic acid (PFDoA)
1H,1H, 2H, 2H-perfluorodecane sulfonic acid (8:2FTS)	perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)
11-chloroeicosafafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	1H,1H, 2H, 2H-perfluorohexane sulfonic acid (4:2FTS)

To find out more about EPA's Unregulated Contaminant Monitoring Rule please visit <https://www.epa.gov/dwucmr/learn-about-unregulated-contaminant-monitoring-rule>

Definitions

AL: *Action Level.* The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

MCL: *Maximum Contaminant Level.* The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG: *Maximum Contaminant Level Goal.* The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL: *Maximum Residual Disinfectant Level.* The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG: *Maximum Residual Disinfectant Level Goal.* The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

N/A: *Not Applicable.*

N/D: *Not Detected.* The results were below the laboratory reporting limit.

NTU: *Nephelometric Turbidity Unit.* A measurement of the water turbidity. Turbidity greater than 5 NTU is noticeable to the average person.

ppb: *Parts per billion.* A measure of the concentration of a substance in a given volume of water. One part per billion corresponds to one penny in \$10,000,000.

ppm: *Parts per million.* A measure of the concentration of a substance in a given volume of water. One part per million corresponds to one penny in \$10,000.

TT: *Treatment Technique.* A required process intended to reduce the level of a contaminant in drinking water.

90th Percentile: The highest result found in 90% of the samples when listed in order from the lowest to the highest results.

Contaminant: Any physical, chemical, biological, or radiological substance or matter in water.

BEFORE THERE'S AN EMERGENCY

Get ready. Get water.

GET PREPARED AT **regionalH2O.org**

2024 System Improvements

Like most cities across the nation, Oregon City has aging infrastructure. In order to continue providing reliable, high quality water to our customers, a percentage of water system revenue is used to fund capital improvement projects. These investments allow us to:

- replace old cast iron pipe with ductile iron pipe. Cast iron pipe tends to corrode over time. This corrosion builds up on the inside of the pipe, reducing the effective diameter and capacity of the pipe. The corrosion also contributes to discolored water that, while being safe to drink, is aesthetically unpleasing.
- ensure reliability by replacing older, smaller diameter piping with larger diameter piping to improve fire flow and help meet the increasing demand of our growing population.
- loop sections of pipeline whenever possible. Eliminating dead-end lines improves water circulation so water quality and fire flow are enhanced.

In 2024, 8,075 feet of new ductile iron pipe was installed!

Replacement of aging components in the drinking water distribution system is necessary to maintain good water quality and system reliability.

Frequently Asked Questions About Drinking Water

I can taste and smell chlorine in the water. Why? Oregon City is required to keep a small amount of chlorine in the water to provide proper disinfection of the drinking water supply. We try to keep the chlorine level as low as possible to prevent unpleasant taste & odor issues; however, some people are more sensitive to the taste and smell of this chlorine than others. The chlorine residual varies throughout the distribution system, but is generally around 1 part per million (ppm). This is well below the maximum level of 4 ppm set by EPA.

Does Oregon City add fluoride to the drinking water? No, Oregon City does not add fluoride to the drinking water. You may want to check with your dentist to see if supplemental fluoride is recommended for your family.

Does Oregon City use Chloramines? No, Oregon City uses chlorine (sodium hypochlorite) as a disinfectant, not chloramines.

What is the pH of Oregon City's water? The pH of Oregon City's water typically ranges from 7.8-8.2; however, in some areas of the city (typically on the edges of the system where water retention time is longest) the pH can be as high as 9.0. As part of our corrosion control program, we never allow the pH to drop below 7.8.

Sometimes the water coming out of the faucet looks dirty. Why? These events are typically caused by the buildings internal plumbing. If your home or business has galvanized pipes, they can give water a reddish-brown or yellow appearance. It is most noticeable if the water has been sitting in the pipes for an extended period of time, such as overnight or when returning home in the evening. Iron is the cause of this discoloration. Discolored water rarely causes health problems. Turning on all your cold water faucets and letting them run for a few minutes usually clears the discoloration. Occasionally water system maintenance or firefighting activities can result in customers receiving discolored water. Again, flushing the plumbing in your home is the best way to get the water to clear up.

Oregon City has NO lead service lines!

Service lines are the pipes that carry water from the water main in the street into your home or building. The City owns and maintains the part of the service line from the water main in the street to the water meter. The water meter is usually located in the sidewalk or at the property line. The customer owns and maintains the portion of the service line that is between the water meter and the building.

In 2021, EPA published the revised Lead & Copper Rule, which required water suppliers to create an inventory of all service line pipe materials in the City's service area, including the private lines between the water meter and building. **Our initial inventory was completed in October 2024. All water services were determined to be non-lead based on a combination of records review, physical inspection, and/or statistical analysis.**

Visit our webpage for more information about this project, to view our inventory, and for other valuable information regarding lead & copper in drinking water. <https://www.orcity.org/1497/Lead-in-Drinking-Water>

Steps to Reduce Your Exposure to Lead

Run the cold water faucet to flush out lead. If water has not been used for several hours, run the cold water for 30 seconds to 2 minutes, or until it becomes cold or reaches a steady temperature, before using it for drinking or cooking.

Use only cold water for cooking, drinking, and preparing baby formula. Do not use hot water from the tap to cook, drink, or make baby formula. Lead dissolves more easily into hot water.

Do not boil water to remove lead. Boiling water will not reduce lead levels.

Consider using a filter. Confirm the filter is approved to reduce lead. Always maintain and replace a filter device in accordance with the manufacturer's instructions to protect water quality. Contact NSF International at **1.800.673.8010** or www.nsf.org for information on performance standards for water filters.

Consider buying low-lead fixtures. As of January 4, 2014 all pipes, fittings, and fixtures are required to contain less than 0.25% lead. When buying new fixtures, consumers should seek out those with the lowest lead content. Visit www.nsf.org to learn more about lead content in plumbing fixtures.

Regularly clean your faucet aerator. Particles containing lead from solder or household plumbing can become trapped in your faucet aerator. Regular cleaning every few months will remove these particles and reduce your exposure to lead. For more information visit <http://www.drinktap.org/water-info/whats-in-my-water/lead-in-water.aspx>.

Important Information About Lead & Drinking Water

Elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. South Fork Water Board and Oregon City are responsible for providing high quality drinking water and removing lead pipes but cannot control the variety of materials used in plumbing components in your home. You share the responsibility for protecting yourself and your family from the lead in your home plumbing. You can take responsibility by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Before drinking tap water, flush your pipes for several minutes by running your tap, taking a shower, doing laundry or a load of dishes. You can also use a filter certified by an American National Standards Institute accredited certifier to reduce lead in drinking water. If you are concerned about lead in your water and wish to have your water tested, contact Oregon City Public Works at 971-204-4600. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/safewater/lead.

Exposure to lead in drinking water can cause serious health effects in all age groups. Infants and children can have decreases in IQ and attention span. Lead exposure can lead to new learning and behavior problems or exacerbate existing learning and behavior problems. The children of women who are exposed to lead before or during pregnancy can have increased risk of these adverse health effects. Adults can have increased risks of heart disease, high blood pressure, kidney, or nervous system problems.

Oregon City has no lead service lines in the distribution system. The water treatment plant increases the pH of Oregon City's water, making it less likely to deteriorate piping materials and plumbing fixtures. Oregon City's most recent lead sampling results can be found on page 4 of this report. **Oregon City is in compliance with all state and federal standards for both lead and copper.**

New Drinking Water Regulations for PFAS

In April 2024, EPA announced new Drinking Water Regulations for six per- and polyfluoroalkyl substances (PFAS). PFAS are a group of man-made compounds that are widely used in many different consumer, commercial, and industrial products. The PFAS group consists of 1000's of individual chemicals. PFAS are long lasting compounds that break down very slowly. They are sometimes referred to as 'forever-chemicals'. Scientific studies have shown that exposure to some PFAS in the environment may be linked to harmful health effects in humans and animals.

Up until April 2024, PFAS were unregulated in drinking water. This new rule is anticipated to prevent exposure to PFAS in drinking water for approx. 100 million people.

The PFAS compounds included in this new rule are: perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorohexanesulfonic acid (PFHxS), perfluorononanoic acid (PFNA), hexafluoropropylene oxide dimer acid (HFPO-DA – known as GenX Chemicals), and perfluorobutanesulfonic acid (PFBS).

The new rule requires public water systems to sample for PFAS every three years and take additional treatment measures if concentrations are detected at concentrations above the Maximum Contaminant Levels (MCLs) set by EPA.

Oregon City completed four rounds of PFAS monitoring in 2024 and no PFAS compounds were detected. Oregon City will continue to sample for PFAS in accordance with this new regulation.

To find out more about EPA's new PFAS regulation please visit their website: <https://www.epa.gov/sdwa/and-polyfluoroalkyl-substances-pfas>

RESOURCES

City Hall: 503-657-0891

Public Works: 971-204-4600

Report a leak: 971-204-4600

Questions about your utility bill: 503-657-8151

City Website: www.orcity.org

Get Involved!

You are encouraged to participate in City decisions that may affect water quality.

City Commission meetings are held at Libke Public Safety Facility, 1234 Linn Ave, the first and third Wednesday of each month, starting at 7:00 pm. Find meeting agenda information or watch archived videos of public meetings at <https://www.orcity.org/1709/Agendas-Videos-and-Minutes>

Oregon City Receives Drinking Water Source Protection Award

In November 2024, Oregon City received a Drinking Water Source Protection Award from Oregon Health Authority (OHA) and the Department of Environmental Quality (DEQ). This award acknowledges our drinking water source protection efforts.

To be eligible for this award, water systems must show substantial progress in implementing measures to protect their drinking water sources from contamination and have strategies in place to reduce the risk of contamination from one or more high- or moderate-risk land-use activities within the drinking water source area.

